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Exercice 1. (a) La multiplicité géométrique demandée est

δλ(2) = dim Ker
(
(B − λ · I7)2) = 2.

Explication : La matrice B = J7(λ) représente un endomorphisme cyclique d’ordre
7 et de valeur propre λ, et on a vu au cours que les multiplicités géométriques valent
δB,λ(k) = min{k, 7} (voir Lemme 9.9.4).

Voici une autre explication, plus directe : la matrice N := B−λI est un bloc de Jordan
nilpotent N = J7(0) d’ordre 7. Si on note {e1, . . . , e7} la base canonique de K7, alors on
Ne1 = 0 et Nei = ei−1 pour i ≥ 2. Puis N2ei = ei−2 pour i ≥ 3 et N2e1 = N2e2 = 0. On
a donc

N2 =



0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Cette matrice est de rang 5 et donc dim Ker(N2) = 7 − 5 = 2.
Plus généralement, pour tout bloc de Jordan nilpotent Jm(0) d’ordrem on a rang(Jk

m(0)) =
m − k pour tout k ≤ m ce qui donne une autre explication de la formule δJm(λ),λ(k) =
min{k,m}.

(b) Le polynôme minimal de J est µ = (X − λ)m, il a donc une racine multiple sauf
si m = 1 et donc J est diagonalisable si et seulement si m = 1.

Autre raisonnement : la seule valeur propre de J est λ. Sa multiplicité géométrique est
1 et sa multiplicité algébrique est m, donc J est diagonalisable si et seulement si m = 1.

Exercice 2. La preuve que {v1, v2, v3} est une base de C3 est une compétence standard
du premier semestre.

Pour trouver la base duale, on écrit la matrice de transition P de la base canonique
vers la base {v1, v2, v3} et on calcule la matrice contragrédiente :

P =

 1 1 0
1 0 1
1 −1 1

 , (P−1)t =

 1 0 −1
−1 1 2

1 −1 −1

 .
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On a donc φ1 = ε1 − ε2 + ε3, φ2 = ε2 − ε3 et φ3 = −ε1 + 2ε2 − ε3 ; ce qui signifie que

φ1(x, y, z) = x− y + z, φ2(x, y, z) = y − z, φ3(x, y, z) = −x+ 2y − z.

On vérifie alors que φi(vj) = δij. Cette méthode n’ayant pas été vue en cours, on peut
soit la retrouver, soit procéder directement (ce qui nous montrera en passant que cette
approche fonctionne en toute dimension et justifiera l’étape précédente). Soit ai, bi, ci ∈ R
(i = 1, 2, 3) tels que {(x, y, z) 7→ φi(x, y, z) = ai x+ bi y + ci z}1≤i≤3 soit la base duale de
{v1, v2, v3}. Comme φi(ej) = δi,j, on obtient les systèmes linéaires successifs :

a1+b1+c1 = 1
a1 − c1 = 0

b1+c1 = 0


a2+b2+c2 = 0
a2 − c2 = 1

b2+c2 = 0


a3+b3+c3 = 0
a3 − c3 = 0

b3+c3 = 1

Les deux dernières équation du premier système montre que a1 = c1 et b1 = −c1, ce qui
donne c1 = 1 et φ1(x, y, z) = x − y + z. De même, on obtient a2 = c2 + 1 et b2 = c2, ce
qui donne c2 = −1 et φ2(x, y, z) = y − z. Enfin, on obtient successivement a3 = c3 et
b3 = 1 − c3, ce qui donne c3 = −1 et φ3(x, y, z) = −x+ 2 y − z.

Exercice 3. Rappelons que E ⊂ V est une famille libre si pour toute combinaison linéaire
nulle est triviale. Il s’agit donc de l’implication logique suivante :[

n∑
i=1

λixi = 0, (avec {x1, · · · , xn} ⊂ E deux à deux distincts)
]

⇒
[
λi = 0 pour tout 1 ≤ i ≤ n

]
.

L’hypothèse de l’exercice implique qu’il existe φi = φxi
∈ V ′ tel que φi(xj) = 0 si et

seulement si i ̸= j. Par conséquent, en multipliant par φi(xi)−1, on obtient (sans changer
la notation) φi ∈ V ′ tel que φi = δxi

. On a alors par linéarité

0 = φj

(
n∑

i=1

λixi

)
=

n∑
i=1

λiδi,j = λj.

Par conséquent, on obtient λj = 0 pour tout 1 ≤ j ≤ n.

L’énoncé réciproque est également vrai. En effet, si E ⊂ V est une famille libre, alors
il existe 1 une base B de V qui contient E. Pour chaque élément x ∈ E on définit alors
une application φx : B → K par la condition que φx(y) = 0 si y ̸= x et φx(y) = 1 si
y = x. On peut alors étendre φx en une application linéaire φx : V → K avec la même
propriété (car B est une base de V ).

1. Cette affirmation est un théorème du premier semestre si dim(V ) < ∞ et si dim(V ) = ∞, c’est un
résultat qu’on prouve en utilisant l’axiome du choix (ou plus précisément, le lemme de Zorn ; voir plus
bas).
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Exercice 4. Nous donnons trois solutions à cet exercice :

Première solution : On remarque tout d’abord que Ker(α) et Ker(β) sont des sous-
espaces vectoriels de dimension n− 1 de W (par le théorème du rang). On suppose aussi
que Ker(α) ̸= Ker(β), cela implique que Ker(α) ̸⊂ Ker(β). On a donc

n− 1 = dim (Ker(α)) < dim (Ker(α) + Ker(β)) ≤ dim(V ) = n.

Par conséquent on doit avoir dim (Ker(α) + Ker(β)) = n et par la formule sur la dimen-
sion d’une somme de sous-espaces vectoriels on a

2(n− 1) = dim (Ker(α)) + dim (Ker(α))
= dim (Ker(α) + Ker(β)) + dim (Ker(α) ∩ Ker(β))
= n+ dim (Ker(α) ∩ Ker(β))

De cette équation on conclut facilement que dim(Ker(α) ∩ Ker(β)) = n− 2.

Deuxième solution : Comme dans la première solution, on constate d’abord que
Ker(α) ̸⊂ Ker(β) et Ker(β) ̸⊂ Ker(α). On peut donc trouver deux vecteurs v, w ∈ W tels
que α(v) = ξ ̸= 0 et β(v) = 0 et α(w) = 0 et β(w) = η ̸= 0.

On considère maintenant l’application f : V → K2 définie par f(x) = (α(x), β(x)).
Alors f(v) = (ξ, 0) et f(w) = (0, η) sont des vecteurs linéairement indépendants. Donc
Im(f) ⊂ K2 est de dimension (au moins 2) et on conclut que dim(Im(f)) = 2 (en
particulier f est surjective). Par le théorème du rang on a donc

dim(Ker(α) ∩ Ker(β)) = dim (Ker(f)) = n− dim(Im(f)) = n− 2.

Troisième solution : Posons W = Ker(α). Alors W est un sous-espace vectoriel de
dimension n − 1 (par le théorème du rang). On considère l’application β|W : W → K,
une forme linéaire sur W . D’abord on remarque que β|W n’est pas l’application nulle, car
si on avait β|W = 0, alors β(w) = 0 pour tout w ∈ W = Ker(α) et donc Ker(α) ⊂ Ker(β).
Mais ces deux sous-espaces sont de dimension n− 1 et non égaux par hypothèse.

Comme β|W ̸= 0 on a que β|W est surjective. (Le seul sous-espace non nul de K est
K lui-même).

Par le théorème du rang on a

n− 1 = dimW = dim(Ker(β|W )) + dim(Im (β|W )) = dim(Ker(β) ∩ Ker(α)) + 1.

On conclut que dim(Ker(α) ∩ Ker(β)) = n− 2.
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Exercice 5. On considère une base quelconque {v1, . . . , vn} de V et on note {φ1, . . . , φn} ⊂
V ′ la base duale. On peut écrire x =

∑n
i=1 xnvn avec xi ∈ K, et comme x ̸= 0 il existe j

tel que xj ̸= 0. On a donc

φj(x) = φj

(
n∑

i=1

xivi

)
= xj ̸= 0,

et on peut donc prendre θ = φj.

Ce résultat est encore valable en dimension infinie, car on définit φi sur Vect {v1, · · · , vn}
par φi(vj) = δi,j puis on étend cette application linéaire à tout l’espace en utilisant le
théorème de Hahn-Banach (se référer à mon cours sur les distributions pour une preuve,
ou consulter l’ouvrage de Haïm Brezis mentionné dans la bibliographie).

Exercice 6. a) Faux en général mais vrai si on suppose φ ̸= 0 (appliquer la formule
du rang pour le voir)).

b) La réponse est oui. On peut ou bien le prouver à partir de l’exercice précédent ou
bien raisonner comme suit : Puisque v est non nul, on peut l’étendre en une base
B = {v1 = v, v2, · · · , vn} de V . Alors la première forme linéaire ψ := φ1 dans la
base duale B′ = {φ1, · · · , φn} satisfait la condition.

c) La réponse est négative si dim(V ) = 1 et positive si dim(V ) ≥ 2. En effet, si
dim(V ) = 1 et v ̸= 0, alors toute forme linéaire non nulle ψ ∈ V ′ satisfait ψ(v) ̸= 0.

En revanche, si dim(V ) ≥ 2, l’affirmation est vraie. En effet, si v ̸= 0 on peut
trouver une base B = {v1 = v, v2, · · · , vn} de V , avec n ≥ 2. Alors la deuxième
forme linéaire ψ := φ2 dans la base duale B′ = {φ1, · · · , φn} satisfait la condition.

d) Oui. En effet, soit B′ = (φ1, · · · , φn) la base de V ′ duale de B. On sait que pour
tout 1 ≤ i ≤ n,

ψi =
n∑

j=1

ψi(vj)φj

(voir la Proposition 10.1.3). Donc ψ1, · · · , ψn forment une base de V ′ si et seule-
ment la matrice (aij) = (ψi(vj))1≤i,j≤n est inversible. De plus cette matrice est la
matrice de transition entre la base {φ1, · · · , φn} et la base {ψ1, · · · , ψn}.

e) Oui. On peut appliquer le critère de l’exercice (d) et vérifier que la 3 × 3−matrice
(φi(ej)) est inversible. On peut aussi raisonner directement : supposons que λ1φ1 +
λ2φ2 +λ3φ3 = 0, avec λ1, λ2, λ3 ∈ R. En évaluant en un vecteur (x, y, z) arbitraire,
on trouve λ1(3x−y+z)+λ2(3x+y+z)+λ3(3x−3y+2z) = 0. Comme (x, y, z) est
arbitraire, on peut prendre (1, 0, 0), (0, 1, 0), et (0, 0, 1), ce qui donne le système

3λ1 + 3λ2 + 3λ3 = 0
−λ1 + λ2 − 3λ3 = 0
λ1 + λ2 + 2λ3 = 0
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dont les seules solutions sont λ1 = λ2 = λ3 = 0 (vérification aisée). Cela montre
l’indépendance linéaire des 3 formes linéaires.

f) Oui. On choisit une base (u1, . . . un−1) de U et on la complète en une base
(u1, . . . un−1, un) de V . On prend pour φ la n-ème fonction coordonnée corres-
pondante, définie par

φ

(
n∑

i=1

aiui

)
= an ∀ a1, . . . , an ∈ K .

C’est une forme linéaire sur V , donc φ ∈ V ′, et il est clair que Ker(φ) = Vect(u1, . . . , un−1) =
U .

Exercice 7. L’énoncé est faux. Par exemple A =
(

1 0
0 2

)
et B =

(
1 1
0 2

)
sont

semblables (car B est diagonalisable) mais non congruentes (car A est symétrique mais
B est non symétrique, or il est facile de vérifier que toute matrice congruente à une
matrice symétrique est elle-même symétrique).

Remarque : Le problème général de décider si deux matrices A, B ∈ Mn(K) sont congruentes
est un problème difficile qui n’a pas de réponse générale simple. Nous étudierons plus tard le
cas très particulier (mais important) des matrices réelles qui sont symétriques.

Exercice 8. (a) Dire qu’une partie S d’un espace vectoriel V est libre signifie que toute
sous-famille finie de vecteurs de S est libre. C’est-à-dire que si {x1, . . . , xm} ⊂ S (et les
xi sont deux-à-deux distincts), et si

∑m
j=1 λjxj = 0, alors λj = 0 pour tout j.

Pour prouver que {δa : a ∈ R} ⊂ C0(R)′ est une famille libre, on doit donc considé-
rer une combinaison linéaire finie de covecteurs d’évaluations qui donne le covecteur nul.
C’est-à-dire

∑m
j=1 λjδaj

= 0 ∈ C0(R)′ où {a1, . . . , am} ⊂ R sont deux-à-deux distincts, et
montrer que λj = 0 pour tout j.

Or en effet, si
m∑

j=1

λjδaj
= 0, alors pour toute fonction continue f ∈ C0(R) on a

0 =
m∑

j=1

λjδaj
(f) =

m∑
j=1

λjf(aj).
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Choisissons une fonction hi ∈ C0(R) telle que hi(aj) = 0 pour tout j ̸= i et hi(ai) ̸= 0
(par exemple hi(x) =

∏
j ̸=i

(xj − aj)), alors

0 =
m∑

j=1

λjhi(aj) = λihi(ai).

Donc λi = 0 puisque hi(ai) ̸= 0. On peut faire cela pour chaque i, donc λi = 0 pour tout
i ce qui démontre que les covecteurs δa1 , . . . , δam sont linéairement indépendants dans
l’espace C0(R)′.

(b) L’intégration sur l’intervalle [a, b] définit une opération linéaire I[a, b] : C0(R) → R,
c’est donc une forme linéaire sur l’espace vectoriel C0(R).

(c) Les formes linéaires I[a,b], I[b,c], I[a,c] ∈ C0(R)′ ne sont pas linéairement indépen-
dantes car on a I[a,c] = I[a,b] + I[b,c]. En effet cette égalité est équivalente à la règle∫ c

a

f(x)dx =
∫ b

a

f(x)dx+
∫ c

b

f(x)dx.

(d) Non on ne peut pas exprimer le covecteur I[a,b] comme combinaison linéaire des
covecteurs {δa : a ∈ R}. Une explication rapide est qu’une combinaison linéaire de covec-
teurs d’évaluations δai

nous donne une information finie sur une fonction (i.e. on l’évalue
en un nombre fini de points) mais l’intégration sur un intervalle dépend de la valeur de
f en « presque tous les points » de cet intervalle (il y a un sens précis à l’expression
« presque tous les points » mais ne nous inquiétons pas de cela.)

Voici un argument plus rigoureux : Si un ensemble fini {a1, . . . an} ⊂ R est donné, on
peut considérer la fonction continue

f(x) =
n∏

i=1

(xi − ai)2.

Cette fonction s’annule exactement sur les points {a1, . . . am} et elle est strictement posi-
tive sur le complémentaire de cet ensemble fini. Par conséquent I[a,b](f) =

∫ b

a
f(x)dx > 0,

mais pour toute combinaison linéaire des δai
on a

n∑
i=1

λiδai
(f) =

n∑
i=1

λif(ai) = 0.

Il n’est donc pas possible que I[a,b] =
n∑

i=1

λiδai
dans l’espace dual C0(R)′.
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Remarque. Le covecteur d’intégration I[a,b] ne peut pas s’écrire comme une comme
combinaison linéaire de covecteurs d’évaluations, mais par contre c’est une limite de telles
combinaisons linéaires. En effet, si pour chaque entier k ∈ N et chaque f ∈ C0([a, b]) on
note

Sk(f) = b− a

k

k−1∑
i=0

f(a+ j
k
(b− a)).

Alors, par définition de l’intégrale de Riemann, on a lim
k→∞

Sk(f) = Ia,b(f). Cela signifie
qu’on peut écrire

I[a,b] = lim
k→∞

Sk = lim
k→∞

b− a

k

k−1∑
j=0

δ
a+ j

k
(b−a)

∈ (C0([a, b]))′.

Exercice 9. Ces deux formes bilinéaires sont identiques. Cela se voit en calculant que

Tr(At ·B) =
m∑

i=1

n∑
j=1

ajibji =
n∑

j=1

m∑
i=1

ajibji = Tr(A ·Bt)

Exercice 10. 1.
— m = 2, J2 =

(
0 1
0 0

)
et exp(J2)= I2 + J2 =

(
1 1
0 1

)
.

— m = 3, J3 =

0 1 0
0 0 1
0 0 0

 et exp(J3)= I3 + J3 + 1
2(J3)2 =

1 1 1
2

0 1 1
0 0 1


— m = 4, J4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 et exp(J4)= I4 +J4 + 1
2(J4)2 + 1

6(J4)3 =


1 1 1

2
1
6

0 1 1 1
2

0 0 1 1
0 0 0 1


En général, pour tout k ≥ 1 on a la formule immédiate en blocs

Jm(0)k =
(

0k−1 Jm−k+1(0)
0m−k+1 0k−1

)
,

où l’on entend que Jm(0)k = 0 pour k ≥ m. La série exponentielle devient donc

exp(Jm) =
∞∑

k=0

1
k! (Jm)k =

m−1∑
k=0

1
k! (Jm)k =



1 1 1
2! · · · 1

(m− 1)!
0 1 1 . . . ...
... 0 . . . . . . 1

2!
0 ... . . . . . . 1
0 0 0 0 1


7
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Dans la base canonique {Eij} de l’espace Mn(K) des matrice carrées on peut écrire

exp(Jm) =
∑
i≤j

1
(j − i)!Eij.

2. Si A et B commutent on peut écrire

1
n! (A+B)n = 1

n!

n∑
k=0

(
n

k

)
AkBn−k =

n∑
k=0

1
(n− k)!k!A

kBn−k.

De plus, par la convergence absolue des séries pour A et B,

exp(A) exp(B) =
∞∑

k=0

1
k!A

k

∞∑
j=0

1
j!B

j =
∞∑

k=0

∞∑
j=0

1
k!

1
j!A

kBj

=
∞∑

k=0

(
k∑

m=0

1
m!

1
(k −m)!A

mBk−m

)
=

∞∑
k=0

(A+B)k

k! = exp(A+B)

3. Rappelons que Jm(λ) = λ Im + Jm. Il est clair que les matrices λ Im et Jm commutent,
donc par le point (b) on a exp(Jm(λ)) = exp(λI+Jm) = exp(λI) exp(Jm), or exp(λ Im) =
eλIm, donc

exp(Jm(λ)) = eλ · exp(Jm) =
∑
i≤j

eλ

(j − i)!Eij =



eλ eλ eλ

2! · · · eλ

(m− 1)!
0 eλ eλ . . . ...
... 0 . . . . . . eλ

2!
0 ... . . . . . . eλ

0 0 0 0 eλ


4. (i) On a

∥A∥ =

√√√√ n∑
i,j=1

|ai,j|2.

On voit donc que c’est la norme associée au produit scalaire standard sur Mn(R), et la
vérification a donc déjà été faite en cours.

(ii) Ici, on aurait envie d’utiliser l’inégalité de Cauchy-Schwarz, mais ce n’est pas si
évident car l’inégalité souhaitée est équivalente à√√√√ n∑

i,j=1

∣∣∣∣∣
n∑

k=1

ai,kbk,j

∣∣∣∣∣
2

≤

√√√√ n∑
i,j=1

|ai,j|2
√√√√ n∑

k,l=1

|bk,l|2.
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L’inégalité de Cauchy-Schwarz montre seulement que
n∑

i,j=1

|ai,j||bi,j| ≤

√√√√ n∑
i,j=1

|ai,j|2
√√√√ n∑

k,l=1

|bk,l|2.

Cependant, l’inégalité de Cauchy-Schwarz permet de prouver le résultat attendu. Pour
tout 1 ≤ i, j ≤ n, on a ∣∣∣∣∣

n∑
k=1

ai,kbk,j

∣∣∣∣∣
2

≤

(
n∑

k=1

|ai,k|2
)(

n∑
l=1

|bl,j|2
)
,

ce qui donne √√√√ n∑
i,j=1

∣∣∣∣∣
n∑

k=1

ai,kbk,j

∣∣∣∣∣
2

≤

√√√√ n∑
i,j=1

(
n∑

k=1

|ai,k|2
)(

n∑
l=1

|bl,j|2
)

=

√√√√ n∑
i,k=1

|ai,k|2
√√√√ n∑

j,l=1

|bl,j|2

en vertu du théorème de Fubini (et cela démontre l’inégalité, l’ordre des indice étant
indifférent).

Autrement, les racines carrées n’aidant pas, on va considérer comme dans la preuve
alternative de l’inégalité de Cauchy-Schwarz la quantité suivante

∥A∥2 ∥B∥2 − ∥AB∥2 =
(

n∑
i,j=1

a2
i,j

)(
n∑

k,l=1

b2
k,l

)
−

n∑
i,j=1

(
n∑

k=1

ai,kbk,l

)2

=
n∑

i,j,k,l=1

a2
i,jb

2
k,l −

n∑
i,j,k,l=1

ai,kbk,jai,lbl,j, (1)

où l’on a utilisé le théorème de Fubini (trivial pour les sommes finies). Les indices i, j, k, l
étant muets, on a également

n∑
i,j,k,l=1

a2
i,jb

2
k,l =

n∑
i,j,k,l=1

a2
i,kb

2
l,j =

n∑
i,j,k,l=1

a2
i,lb

2
k,j. (2)

Attention, il faut que tous les indices soient distincts (autrement, le théorème de Fubini
ne serait pas applicable). Par conséquent, on obtient par (1) et (2)

∥A∥2 ∥B∥2 − ∥AB∥2 =
n∑

i,j,k,l

(
1
2a

2
i,kb

2
l,j + 1

2a
2
i,lb

2
k,j

)
−

n∑
i,j,k,l

ai,kbk,jai,lbl,j

= 1
2

n∑
i,j,k,l=1

(ai,kbl,j − ai,lbk,j)2 ≥ 0
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et l’inégalité est

démontrée.
(iii) On obtient donc par récurrence immédiate∥∥Ak

∥∥ ≤ ∥A∥k pour tout k ∈ N.

Par conséquent, pour tout N ∈ N, on a (en utilisant les propriétés de la norme)∥∥∥∥∥
N∑

k=0

1
k!A

k

∥∥∥∥∥ ≤
N∑

k=0

1
k!
∥∥Ak

∥∥ ≤
N∑

k=0

1
k! ∥A∥k −→

N→∞

∞∑
k=0

1
k! ∥A∥k = e∥A∥ < ∞.

Par conséquent, la série (qu’on voit comme une série vectorielle à valeurs dans Rn2) est
absolument convergente, ce qui implique qu’elle est convergente (résultat d’analyse, qui
découle simplement de la complétude de Rn2 muni de sa distance canonique issue de la
norme euclidienne) et le résultat est démontré.

10


