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Exercice 1. (a) La multiplicité géométrique demandée est

0x(2) = dimKer (B =X+ I)?) = 2.

Explication : La matrice B = J7(\) représente un endomorphisme cyclique d’ordre
7 et de valeur propre A, et on a vu au cours que les multiplicités géométriques valent
dpa(k) = min{k, 7} (voir Lemme 9.9.4).

Voici une autre explication, plus directe : la matrice N := B—AI est un bloc de Jordan
nilpotent N = J;(0) d’ordre 7. Si on note {ey,...,e;} la base canonique de K’, alors on
Ne; =0et Ne; = e;_1 pour i > 2. Puis N2e; = e;_5 pour i > 3 et N?e; = N2e; = 0. On
a donc

0010000
0001000
00007100
N2=]00000O0OT1D0
0000O0TO0'1
0000O0O0O
00000O0O0D

Cette matrice est de rang 5 et donc dim Ker(N?) =7 —5 = 2.

Plus généralement, pour tout bloc de Jordan nilpotent .J,,,(0) d’ordre m on a rang(J* (0)) =
m — k pour tout k < m ce qui donne une autre explication de la formule 6, x) (k) =

min{k, m}.

(b) Le polynéme minimal de J est = (X — A\)™, il a donc une racine multiple sauf
si m = 1 et donc J est diagonalisable si et seulement si m = 1.

Autre raisonnement : la seule valeur propre de J est \. Sa multiplicité géométrique est
1 et sa multiplicité algébrique est m, donc J est diagonalisable si et seulement si m = 1.

Exercice 2. La preuve que {vy, v, v3} est une base de C? est une compétence standard
du premier semestre.

Pour trouver la base duale, on écrit la matrice de transition P de la base canonique
vers la base {vq,v9,v3} et on calcule la matrice contragrédiente :

1 10 1 0 -1
P=|(1 o01], PH=[-1 1 2
1 —1 1 1 -1 —1
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On a donc ¢ = &1 — ey + €3, o = €9 — €3 €t (p3 = —e1 + 269 — £3; ce qui signifie que

901(x7yaz):l‘_y+za @2(%%2):9—27 @3<$>yaz):_$+2fy_z

On vérifie alors que ¢;(v;) = d;;. Cette méthode n’ayant pas été vue en cours, on peut
soit la retrouver, soit procéder directement (ce qui nous montrera en passant que cette
approche fonctionne en toute dimension et justifiera 1’étape précédente). Soit a;, b;, ¢; € R
(i =1,2,3) tels que {(z,y, 2) = pi(z,y,2) = a;x + b; y + ¢; 2}, ., .5 soit la base duale de
{v1,v9,v3}. Comme ;(e;) = d; ;, on obtient les systémes linéaires successifs :

a1 +bi+c; =1 as+batco =0 as+bz+c3 =0

ap — =0 a, — cp=1 a3 — c3=0

bi+c, =0 batco =0 batcs =1
Les deux dernieres équation du premier systeme montre que a; = ¢y et by = —¢yq, ce qui
donne ¢; = 1 et pi(z,y,2) =z — y + z. De méme, on obtient as = co + 1 et by = ¢y, ce
qui donne ¢y = —1 et po(z,y,2) = y — z. Enfin, on obtient successivement az = c3 et

b3 =1 — c3, ce qui donne ¢3 = —1 et g3(x,y,2) = —x+2y — 2.

Exercice 3. Rappelons que E C V est une famille libre si pour toute combinaison linéaire
nulle est triviale. Il s’agit donc de I'implication logique suivante :

Z Niz; =0, (avec {xy, - ,x,} C F deux a deux distincts) ] = [)\Z- =0 pour tout 1 <i < n}
i=1

L’hypothese de 'exercice implique qu’il existe ¢; = ¢,, € V' tel que ¢;(z;) = 0 si et
seulement si 7 # j. Par conséquent, en multipliant par ¢;(z;)~!, on obtient (sans changer
la notation) ¢; € V' tel que ¢; = J,,. On a alors par linéarité

i=1 i=1

Par conséquent, on obtient A; = 0 pour tout 1 < j < n.

L’énoncé réciproque est également vrai. En effet, si £ C V' est une famille libre, alors
il existe! une base B de V qui contient E. Pour chaque élément x € E on définit alors
une application ¢, : B — K par la condition que p,(y) = 0 si y # z et v,(y) = 1 si
y = x. On peut alors étendre ¢, en une application linéaire ¢, : V — K avec la méme
propriété (car B est une base de V).

1. Cette affirmation est un théoréme du premier semestre si dim(V') < oo et si dim(V') = oo, c’est un
résultat qu’on prouve en utilisant ’axiome du choix (ou plus précisément, le lemme de Zorn; voir plus
bas).
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Exercice 4. Nous donnons trois solutions a cet exercice :

Premiére solution : On remarque tout d’abord que Ker(«a) et Ker(3) sont des sous-
espaces vectoriels de dimension n — 1 de W (par le théoréme du rang). On suppose aussi
que Ker(a) # Ker(/3), cela implique que Ker(a) ¢ Ker(f). On a donc

n —1 = dim (Ker(a)) < dim (Ker(a) 4+ Ker(3)) < dim(V) = n.

Par conséquent on doit avoir dim (Ker(a) + Ker(5)) = n et par la formule sur la dimen-
sion d'une somme de sous-espaces vectoriels on a

2(n —1) = dim (Ker(«)) 4 dim (Ker(a))
= dim (Ker(a) + Ker(5)) + dim (Ker(a) N Ker(f))
= n + dim (Ker(a) N Ker(5))

De cette équation on conclut facilement que dim(Ker(a) N Ker(5)) =n — 2.

Deuxieme solution : Comme dans la premiere solution, on constate d’abord que
Ker(a) ¢ Ker(f) et Ker(8) ¢ Ker(a). On peut donc trouver deux vecteurs v, w € W tels

que a(v) =€ #0et f(v) =0et a(w) =0 et B(w) =n#0.

On considére maintenant application f : V — K? définie par f(z) = (a(z), 5(z)).
Alors f(v) = (£,0) et f(w) = (0,n) sont des vecteurs linéairement indépendants. Donc
Im(f) C K? est de dimension (au moins 2) et on conclut que dim(Im(f)) = 2 (en
particulier f est surjective). Par le théoréeme du rang on a donc

dim(Ker(a) N Ker(5)) = dim (Ker(f)) = n — dim(Im(f)) =n — 2.

Troisiéme solution : Posons W = Ker(«). Alors W est un sous-espace vectoriel de
dimension n — 1 (par le théoréme du rang). On consideére I'application S|y : W — K,
une forme linéaire sur W. D’abord on remarque que /3|y n’est pas 'application nulle, car
si on avait S|y = 0, alors f(w) = 0 pour tout w € W = Ker(«a) et donc Ker(a) C Ker(3).
Mais ces deux sous-espaces sont de dimension n — 1 et non égaux par hypothese.

Comme S|y # 0 on a que S|y est surjective. (Le seul sous-espace non nul de K est
K lui-méme).

Par le théoreme du rang on a
n—1=dim W = dim(Ker(8|w)) + dim(Im (5|w)) = dim(Ker(5) N Ker(«)) + 1.

On conclut que dim(Ker(a) N Ker(5)) =n — 2.
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Exercice 5. On considére une base quelconque {vy, ...,v,} de V et on note {¢1,...,¢0,} C

V' la base duale. On peut écrire z = Z?:l v, avec x; € K et comme x # 0 il existe j
tel que z; # 0. On a donc

pi(r) = ¢; (Z %‘Uz‘) =xz; #0,
i=1
et on peut donc prendre 0 = ;.

Ce résultat est encore valable en dimension infinie, car on définit ¢; sur Vect {vy, -+, v, }
par ¢;(v;) = d;; puis on étend cette application linéaire a tout l'espace en utilisant le
théoreme de Hahn-Banach (se référer & mon cours sur les distributions pour une preuve,
ou consulter 'ouvrage de Haim Brezis mentionné dans la bibliographie).

Exercice 6. a) Faux en général mais vrai si on suppose ¢ # 0 (appliquer la formule
du rang pour le voir)).
b) La réponse est oui. On peut ou bien le prouver a partir de l’exercice précédent ou
bien raisonner comme suit : Puisque v est non nul, on peut I’étendre en une base
B = {vy = v,v9,--+ ,v,} de V. Alors la premiere forme linéaire ¢ := ¢; dans la
base duale B’ = {1, -+, p,} satisfait la condition.
c) La réponse est négative si dim(V) = 1 et positive si dim(V') > 2. En effet, si
dim(V') = 1 et v # 0, alors toute forme linéaire non nulle ¢ € V"’ satisfait ¢ (v) # 0.

En revanche, si dim(V') > 2, laffirmation est vraie. En effet, si v # 0 on peut
trouver une base # = {v; = v, vy, ,v,} de V, avec n > 2. Alors la deuxiéme
forme linéaire 1) := ¢y dans la base duale ' = {1, - - , ¢, } satisfait la condition.

d) Oui. En effet, soit &' = (¢1,- -+ ,¢n) la base de V' duale de Z. On sait que pour
tout 1 <17 < n,

v =Y iV
j=1

(voir la Proposition 10.1.3). Donc 1)y, - - - , 1, forment une base de V' si et seule-
ment la matrice (a;;) = (v:(v;))1<ij<n est inversible. De plus cette matrice est la
matrice de transition entre la base {1, -+, ¢, } et la base {¢1,- -+, ¥, }.

e) Oui. On peut appliquer le critere de l'exercice (d) et vérifier que la 3 x 3—matrice
(pi(e;)) est inversible. On peut aussi raisonner directement : supposons que A;; +
Aoa+ A3z = 0, avec Aj, Ay, A3 € R. En évaluant en un vecteur (z,y, z) arbitraire,
on trouve A\ (3 —y+2)+ X3z +y+2)+ A3(3x —3y+22) = 0. Comme (z,y, 2) est
arbitraire, on peut prendre (1,0,0), (0,1,0), et (0,0,1), ce qui donne le systéme

3M +3X+3X3=0

—)\1‘|— )\2—3)\3:0
M+ A+203=0
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dont les seules solutions sont \; = Ay = A3 = 0 (vérification aisée). Cela montre
I'indépendance linéaire des 3 formes linéaires.
f) Oui. On choisit une base (ui,...u,_1) de U et on la compléte en une base
(u1,...Up_1,u,) de V. On prend pour ¢ la n-éme fonction coordonnée corres-
pondante, définie par

@(Zaiui>:an Vay,...,a, € K.
i=1

C’est une forme linéaire sur V, donc ¢ € V', et il est clair que Ker(y) = Vect(uy, ..., up—1) =

U.

Exercice 7. L’énoncé est faux. Par exemple A = ( (1] g ) et B = ( (1] ; ) sont

semblables (car B est diagonalisable) mais non congruentes (car A est symétrique mais
B est non symétrique, or il est facile de vérifier que toute matrice congruente a une
matrice symétrique est elle-méme symétrique).

Remarque : Le probléme général de décider si deux matrices A, B € M,,(K) sont congruentes
est un probleme difficile qui n’a pas de réponse générale simple. Nous étudierons plus tard le
cas tres particulier (mais important) des matrices réelles qui sont symétriques.

Exercice 8. (a) Dire qu'une partie S d’'un espace vectoriel V' est libre signifie que toute
sous-famille finie de vecteurs de S est libre. C’est-a-dire que si {z1,...,z,} C S (et les
x; sont deux-a-deux distincts), et si Z;nzl Ajz; =0, alors A\; = 0 pour tout j.

Pour prouver que {d, : a € R} C C°(R)’ est une famille libre, on doit donc considé-
rer une combinaison linéaire finie de covecteurs d’évaluations qui donne le covecteur nul.
Clest-a-dire 30" | \jda; = 0 € CO(R) olt {ay, ..., a,n} C R sont deux-a-deux distincts, et
montrer que A\; = 0 pour tout j.

m
Or en effet, si Z Ajda; = 0, alors pour toute fonction continue f € C°(R) on a
j=1
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Choisissons une fonction h; € C°(R) telle que h;(a;) = 0 pour tout j # i et h;(a;) # 0

(par exemple h;(z) = 1_[(.91:J —ay)), alors
J#i

J=1

Donc A; = 0 puisque h;(a;) # 0. On peut faire cela pour chaque i, donc A; = 0 pour tout
1 ce qui démontre que les covecteurs dg,,...,0d,, sont linéairement indépendants dans
I'espace CO(R)’.

(b) L’intégration sur 'intervalle [a, b] définit une opération linéaire I;a, b] : C°(R) — R,
c’est donc une forme linéaire sur I'espace vectoriel C°(R).

(¢) Les formes linéaires Ijqp), I, L) € C°(R)" ne sont pas linéairement indépen-
dantes car on a I = Ijqp + Iy En effet cette égalité est équivalente a la regle

/acf(a:)da: = /abf(ar)dz + /bcf(x)dx.

(d) Non on ne peut pas exprimer le covecteur Ij,; comme combinaison linéaire des
covecteurs {4, : a € R}. Une explication rapide est qu'une combinaison linéaire de covec-
teurs d’évaluations d,, nous donne une information finie sur une fonction (i.e. on I’évalue
en un nombre fini de points) mais l'intégration sur un intervalle dépend de la valeur de
f en « presque tous les points » de cet intervalle (il y a un sens précis a 1'expression
« presque tous les points » mais ne nous inquiétons pas de cela.)

Voici un argument plus rigoureux : Si un ensemble fini {as,...a,} C R est donné, on
peut considérer la fonction continue

Cette fonction s’annule exactement sur les points {a1, ... a,,} et elle est strictement posi-
tive sur le complémentaire de cet ensemble fini. Par conséquent I}, (f) = fab f(z)dx >0,
mais pour toute combinaison linéaire des d,, on a

Z Aida, (f) = Z Aif(ai) = 0.

Il n’est donc pas possible que Ijp) = Z A\idq, dans I'espace dual C°(R)'.
i=1



EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Solution 8 10 avril 2025

Remarque. Le covecteur d’intégration I,y ne peut pas s’écrire comme une comme
combinaison linéaire de covecteurs d’évaluations, mais par contre c’est une limite de telles
combinaisons linéaires. En effet, si pour chaque entier k¥ € N et chaque f € C°([a,b]) on
note

k-1
b—a
Si(f) === _fla+i(b—a)
=0
Alors, par définition de l'intégrale de Riemann, on a khm Sk(f) = Lip(f). Cela signifie
—00
qu’on peut écrire
g !
- 0 /
fa = fim 5= Jim ST 30y € ()

Exercice 9. Ces deux formes bilinéaires sont identiques. Cela se voit en calculant que

= Zzajibﬂ Zzaﬂ i = Tr(A- Bt)

i=1 j=1 7j=1 =1

Exercice 10. 1.
=2 b= (0 Y o)=L m= (]
m—72—ooeexp2—2 2= \o 1/

010 11 %
7m:3, ng 0 01 et eXp(Jg)— 13+J3—|' (Jg) = 011
0 00 0 0 1
0100 11 3 3
i
— m=4,Jy= 8 8 (1) 2 et exp(Jy)=Is+Ju+5(J1)2 4+ 5(J1)® = 8 é } i
0000 00 01

En général, pour tout £ > 1 on a la formule immédiate en blocs

nof = (@)

m—k+1 Or—1

ott I'on entend que J,,(0)¥ = 0 pour k > m. La série exponentielle devient donc

11 1 1
2! (m—1)!
eXp ZE = E(Jm) =l 0 - - l
k=0 k=0 21
0 1
00 0 O 1
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Dans la base canonique {E;;} de I'espace M,,(K) des matrice carrées on peut écrire

exp(Jm) = Z (#Ew

= U
2. Si A et B commutent on peut écrire
- 1
A+ B)" ARBrh =N Ak pnR
( + nvz<) kzzo(n—k)!k!

De plus, par la convergence absolue des séries pour A et B,

1 1 . 11 .
exp(A) exp(B) = Z EAk FBJ - Z Z EﬁAkB]
k=0 j=0 " k=0 j=0 "V~
[e%) k
B 1 1 mokom | (A + B)
k=0 \m=0 k=0

3. Rappelons que J,,,(A) = AL, + Jy,. Il est clair que les matrices A1, et J,,, commutent,
donc par le point (b) on a exp(J,,(\)) = exp(A + J,,,) = exp(A]) exp(J,,), or exp(A1,) =
e*,,, donc

er el i . ¢
2! (m—1)!
oA 0 e e . :
exp(Jm(N) = € - exp(Jm) = ) me = 4 - - et
0 A
0O 0 0 0

4. (i) On a

Il =

On voit donc que c’est la norme associée au produit scalaire standard sur M, (R), et la
vérification a donc déja été faite en cours.

(ii) Ici, on aurait envie d’utiliser I'inégalité de Cauchy-Schwarz, mais ce n’est pas si
évident car I'inégalité souhaitée est équivalente a

n n 2 n n
DD aiwbeg| < | D laigl?y | D bl
ij=1 | k=1 ij=1 k=1
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L’inégalité de Cauchy-Schwarz montre seulement que

n n n
> aiglbigl < 1Y laigl | D (bl
i,7=1 3,7=1 k,l=1

Cependant, I'inégalité de Cauchy-Schwarz permet de prouver le résultat attendu. Pour

tout 1 <4,5 <n,ona
2 n n
< (S (L),
k=1 1=1

. \ > (Z |ai,kr2) (Z rbz,m)

n

g a; by,

k=1

ce qui donne

n

2.

n

E ai,lcbk,j

ig—=1 | k=1 ij=1 \k=1 =1
n n

= D laisl? [ D bl
i k=1 =1

en vertu du théoréeme de Fubini (et cela démontre I'inégalité, 'ordre des indice étant
indifférent).

Autrement, les racines carrées n’aidant pas, on va considérer comme dans la preuve
alternative de I'inégalité de Cauchy-Schwarz la quantité suivante

n n n n 2
JAIP 1BI ~ [ AB|I* = (Z ) (Z b) -y (Z b>
k=1

ij=1 k=1 ij=1
n n
2 12
= Y albi,— > aisbrgaiby, (1)
i,5,k,1=1 ,7,k,l=1

ou l'on a utilisé le théoréme de Fubini (trivial pour les sommes finies). Les indices 4, j, k, [
étant muets, on a également

n n n
2,2 _ 2 32 2 12
Z @i,jbk,z* Z ai,kbz,j* Z ai,lbk,j' (2)
i’j’k’lzl 7:7j7k7l:1 i7j7k7l:1

Attention, il faut que tous les indices soient distincts (autrement, le théoreme de Fubini
ne serait pas applicable). Par conséquent, on obtient par (1) et (2)

n n

2 2 2 1 1
[AI7 [ BII" = [[AB]|" = Z <§a?,kbl2,j + éa?,lbi,j - Z a; kb jai by

Z‘?j7k7l i7j7k7l
1 — )
=3 Y (aigby — aigbrg)? =0
i7j7k7l:1
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et I'inégalité est

démontrée.

(iii) On obtient donc par récurrence immédiate
HAI“H < ||A|[*  pour tout k € N.

Par conséquent, pour tout N € N, on a (en utilisant les propriétés de la norme)
N
Lok
> A
k=0

Par conséquent, la série (qu’on voit comme une série vectorielle & valeurs dans R"Q) est
absolument convergente, ce qui implique qu’elle est convergente (résultat d’analyse, qui
découle simplement de la complétude de R™ muni de sa distance canonique issue de la
norme euclidienne) et le résultat est démontré.

N N 0o

1 1 1
<D A< 1A = D 1Al =€ < oo,

k=0 k=0 k=0

10



